The Transformation of γ-FeO(OH) to Fe₃O₄ and Green Rust II in an Aqueous Solution

Yutaka Tamaura,* Mervelina Saturno, Kaoru Yamada, and Takashi Katsura Department of Chemistry, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152 (Received February 17, 1984)

A mechanism of the transformation of γ -FeO(OH) to Fe₃O₄ and/or green rust II in an aqueous solution containing Fe^{II} ion in the presence or absence of the SO₄²⁻ ion at 298 K is described. γ -FeO(OH) is dissolved by two mols of Fe^{II} ions adsorbed on the surface of γ -FeO(OH), and a dissolved species (DS) is formed, which is then transformed to Fe₃O₄ or green rust II. The equilibrium of the formation of green rust II from γ -FeO(OH) is represented by:

$$K = [H^+]^2/(K_h^2[Fe^{2+}]^2[SO_4^{2-}])$$
 $K = 2.14 \times 10^8$.

where K_h is the hydrolysis constant of Fe²⁺. This equation shows that, for a given proton concentration(pH), higher concentrations of Fe²⁺ and SO₄²⁻ ions facilitate the formation of green rust II from γ -FeO(OH). When little green rust II is formed, the DS is transformed to Fe₃O₄.

The Fe^{II} ions dissolved from the steel surface in the course of the atmospheric rusting are oxidized by oxygen, and eventually the surface is covered with rusting products of iron oxides and hydroxide oxides. Studies of the formation of iron oxides and hydroxide oxides by the air oxidation of FeII ions in an aqueous solution give useful knowledge for an understanding of the atmospheric rusting of mild steel or low-alloy steel, as reported by Kiyama,1) Bernal et al.,2) and Misawa et al.3) This oxidation reaction has also been studied in relation to the formation of ferrites in aqueous solutions; ferrites are formed by the air oxidation of an Fe(OH)₂ suspension containing other metal ions.^{4–10)} In these oxidation reactions, some intermediates are formed; greenish precipitates called "green rusts" are formed in the course of the oxidation reaction. 1-3) They are transformed to γ-FeO(OH) or Fe₃O₄ by further oxidation.

Recently we have ourselves reported that a green rust (green rust II) is spontaneously transformed into Fe₃O₄ without being oxidized¹¹⁾ and that γ -FeO(OH) is transformed into Fe₃O₄ by Fe^{II} ions at pH 7—11 without any oxidation reaction.^{12,13)} Furthermore, ferrites are formed from a suspension containing γ -FeO(OH) and Fe^{II} and other metal ions without any oxidation reaction.^{14,15)} These findings suggest that there are two steps in the oxidation reaction where Fe₃O₄ or ferrites are formed: 1) The oxidation step of the Fe^{II} ion, where such intermediates as green rusts and γ -FeO(OH) are formed, and 2) the transformation step of the intermediates into Fe₃O₄ or ferrites without any oxidation reaction.

In the present paper, we have studied the transformation of γ -FeO(OH) into Fe₃O₄ and/or green rust II in the presence of Fe^{II} and SO₄²⁻ ions without any oxidation reaction. The reaction mechanism of the transformation will be discussed.

Experimental

Chemicals. All the chemicals were of an analytical grade, and distilled water was used for the preparation of the chemical solutions. The NaOH solution was prepared by dissolving NaOH in distilled water through which nitrogen gas had been passed to remove the dissolved oxygen. The γ -

FeO(OH) was prepared according to the method described in a previous paper. (3)

Apparatus. The reaction vessel used in a previous paper was adopted. 13) The reaction vessel was immersed in a water bath, and the reaction temperature was kept at 298±0.5 K.

Procedures. Throughout the experiments, we tried to avoid leakage of oxygen into the reaction suspension. After passing nitrogen gas through a suspension of γ-FeO(OH) $(0.7 \text{ dm}^3, 0.002 \text{ kmol m}^{-3})$ of the desired pH (8.5 or 10.0), and Fe(OH)₂ suspension (0.02 dm³, 0.40 kmol m⁻³) of that pH was added. The suspension thus obtained will be referred to as "the reaction suspension." The reaction was initiated when the Fe(OH)2 suspension was added. The reaction pH was maintained at 8.5 or 10.0±0.03 by adding a sulfuric-acid solution. The amount of released OH- was estimated from the volume of the sulfuric-acid solution consumed. The time from the addition of the Fe(OH)₂ suspension is referred to as "the reaction time." In the course of the reaction, 0.005-dm3 portions of the reaction suspension were taken out at constant time intervals using a syringe and transferred to a tartaric-acid solution (10 w/v\%, pH 6.0, 0.04 dm³). After allowing the suspension thus obtained to stand for 60 min, the suspension was centrifuged at 4000 r.p.m. The precipitate was washed with the tartaric-acid solution. The Fe₃O₄ formed and the y-FeO(OH) left unreacted do not dissolve in the tartaric-acid solution, but the intermediate green rust II(GR-II) does. The precipitate thus obtained was dissolved in a 0.002-dm3 HCl solution (1:1). The Fe^{II} and Fe_{total} in the solution were determined. The amount of Fe₃O₄ was evaluated from the Fe¹¹ concentration by assuming the stoichiometric chemical composition of Fe₃O₄. The amount of γ-FeO(OH) left unreacted was evaluated from the difference between the amount of Fe¹¹¹ in the precipitate and Fe₃O₄. The amount of the intermediate dissolved in the tartaric-acid solution was evaluated from the difference between the amount of FeIII in the initial reaction suspension and the sum of the FeIII in the Fe₃O₄ and y-FeO(OH) found in the suspension. The intermediate dissolved in the tartaric-acid solution will henceforth be referred to as "the TA-soluble intermediate."

The sample for X-ray diffractometry was prepared as follows: The precipitate obtained through the centrifugation of the reaction suspension was mounted on a glass plate under a nitrogen atomosphere and sealed with cellophane tape to prevent oxidation. For the IR spectroscopy, the precipitate was washed with oxygen-free acetone to remove as much water as possible and then dried under a nitrogen atmosphere. The IR spectra of the dried product were obtained as Nujol mulls.

Chemical Analysis. The Fe^{II} and Fe_{total} concentrations were determined by the 2,2'-bipyridyl method. ¹⁶⁾ The Fe_{total} concentration was determined after reducing the Fe^{III} to Fe^{II} with hydroxylamine.

Results and Discussion

Dissolved Species (DS) and the TA-soluble Intermediate. As reported previously, ¹³⁾ when the Fe^{II} ion was added to the γ -FeO(OH) suspension (pH 8.5) in the absence of SO₄²⁻ (Curve A in Fig. 1), γ -FeO(OH) was transformed to Fe₃O₄ (Curve C). In this reaction, γ -FeO(OH) adsorbs the Fe^{II} ion, dissolves, and it transformed to Fe₃O₄. ¹³⁾ The adsorption reaction is written as:

$$\gamma$$
-FeO(OH)(s-) + FeOH+ \Longrightarrow
 γ -FeO(OH)(s-FeOH+), (1)
(ADInt)

where s- is the adsorption site of γ -FeO(OH) and where ADInt is the Fe²⁺-adsorbed intermediate.^{13,17)} The dissolved species formed in the dissolution step will be composed of Fe¹¹ and Fe¹¹¹ ions. The dissolution step will be given by:

ADInt
$$\longrightarrow (Fe^{2+})_x(Fe^{3+})_y$$
 complex, (2)
(DS)

where DS means the dissolved species.

As can be seen in Fig. 2, when the SO₄²⁻ ion was present in the reaction suspension, γ-FeO(OH) (Curve A) was not transformed to Fe₃O₄ (Curve C), but to a TA-soluble intermediate (Curve B); almost all of the γ-FeO(OH) was transformed to the TA-soluble intermediate in 60 min. The X-ray diffraction pattern of the TA-soluble intermediate precipitate formed within 60 min corresponded to that of green rust II. In the IR spectrum of the precipitate, strong bands due to SO₄²⁻ appeared at 1100 and 630 cm⁻¹. These results suggest that the DS formed in the dissolution step combines with the SO₄²⁻ ion and is transformed to green rust II (GR-II).

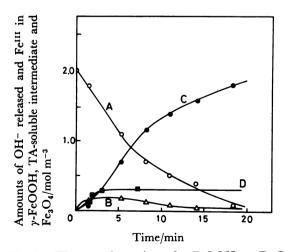


Fig. 1. The transformation of γ -FeOOH to Fe₃O₄ at pH 8.5. Fe²⁺/ γ -FeOOH=3.60, SO₄²⁻=0 mol m⁻³. Curve A; γ -FeOOH, B; TA-soluble intermediate, C; Fe₃O₄, D; OH⁻.

Curves D in Figs. 1 and 2 show the release of OH-during the formation of GR-II. These results suggest that no OH- is released in the formation of Fe₃O₄, but only in that of GR-II. This OH--releasing will be discussed later.

Here, we studied the effect of the Fe^{II} concentration on the formation of GR-II from γ -FeO(OH). The results are given in Figs. 3a and 3b, where the reaction pH and the concentrations of γ -FeO(OH) and SO₄²⁻ are the same as those of Fig. 2, but where the Fe^{II} concentrations in the reaction suspensions are lower than that of Fig. 2. As the Fe^{II} concentration in the reaction suspension decreased from 7.40 mol m⁻³ (Fig. 2) to 1.63 mol m⁻³ (Fig. 3b), the consumption of γ -FeO(OH) (Curve A) decreased. The relationship between the

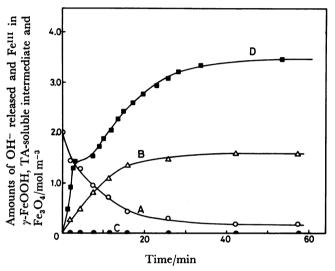


Fig. 2. The transformation of γ -FeOOH to green rust II at pH 8.5. Fe²⁺/ γ -FeOOH=3.60, SO₄²⁻=10.0 mol m⁻³. Curve A; γ -FeOOH, B; green rust II (TA-soluble intermediate), C; Fe₃O₄, D; OH⁻.

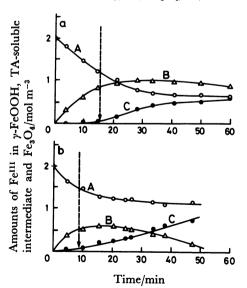


Fig. 3. Effect of Fe²⁺ concentration on the transformation of γ-FeOOH at pH 8.5 and at 10.0 mol m⁻³ of SO₄²⁻. Fe²⁺/γ-FeOOH=1.50(a), and 0.81(b). Curve A; γ-FeOOH, B; green rust II, C; Fe₃O₄.

Figure No.	$\begin{array}{c} {\rm Fe_{initial}^{2+}}\\ ({\rm mol}\;{\rm m^{-3}}) \end{array}$	γ-FeOOH _{initial} (mol m ⁻³)	$\frac{Fe_{\text{initial}}^{2+}}{\gamma\text{-FeOOH}_{\text{initial}}}$ (mol m ⁻³)	γ-FeOOH _{reacted} (mol m ⁻³)	$\frac{Fe_{\text{initial}}^{2+}}{\gamma\text{-FeOOH}_{\text{reacted}}}$ (mol m^{-3})
3 a	3.08	2.06	1.50	1.38	2.23
3b	1.67	2.06	0.81	0.68	2.46

Table 1. The effect of the Fe(II) concentration on the transformation of $\gamma\text{-FeOOH}$

amount of reacted γ -FeO(OH) and that of the Fe^{II} ions initially present in the reaction suspension is given in Table 1. The amount of Fe^{II} in the initial suspension is higher than the amount of γ -FeO(OH)_{initial} in Figs. 2 and 3a, but lower than that in Fig. 3b (Column 4 in Table 1). The amount of γ -FeO(OH)_{reacted} (Column 5) decreased as the initial amount of Fe^{II} decreased (Column 2). However, the mol ratios of Fe²⁺_{initial}/ γ -FeO(OH)_{reacted} (Column 6) are approximately 2 at a Fe²⁺_{initial}/ γ -FeO(OH)_{initial} ratio below 2 (column 4). This suggests that at least two mols of the Fe^{II} ions are needed to dissolve one mol of γ -FeO(OH). These results suggest that the dissolved species (DS) are composed of one Fe^{III} and two Fe^{II} ions.

Three Stages of γ -FeO(OH)-transformation Reaction. At lower Fe^{II} concentrations (Fe²⁺/ γ -FeO(OH)_{initial} ratio below 2; Figs. 3a and 3b), the amount of GR-II increased, attaining its maximum as the reaction proceeded (Curve B). When the amount of GR-II became near the maximum in Figs. 3a and 3b (indicated by arrows), the Fe₃O₄ formation (Curve C) became prominent. The amount of Fe₃O₄ increased with time, accompanied by the consumption of γ -FeO(OH) (Curve A). However, as the reaction proceeded further (cf. Figs. 3a and 3b), the amount of GR-II decreased (slightly in Fig. 3a, but prominently in Fig. 3b). This decrease resulted in the Fe₃O₄-formation (Curve C) without any consumption of γ -FeO(OH), indicating that GR-II is transformed to Fe₃O₄.

Thus, at lower Fe^{II} concentrations (the Fe²⁺_{initial}/ γ -FeO(OH)_{initial} ratio below 2), the DS is transformed to GR-II in the initial stage, and then to Fe₃O₄ in the second stage, where no further GR-II is formed. In the third stage, the transformation of GR-II to Fe₃O₄ mainly occurs.

On the other hand, at a high FeII concentration $(Fe^{2+}_{initial}/\gamma - FeO(OH)_{initial} \text{ ratio} = 3.60, Fig. 2)$, only the first-stage reaction is seen. In this case, an excess of Fe^{II} ions is present, since Fe(OH)₂ precipitates coexist throughout the reaction. This means that the suspension contains dissolved FeII ions, whose concentration is estimated to be about 10⁻⁴ kmol m⁻³ from the solubility product of Fe(OH)₂. On the other hand, in the case shown in Figs. 3a and 3b, since most of the Fe^{II} ions are consumed in the formation of GR-II, the concentration of the dissolved Fe^{II} ions seems to become lower than 10-4 kmol m-8 as the reaction proceeded. This lowering of the Fe^{II} concentration seems to cause the secondstage reaction. That is, in the second stage (Figs. 3a and 3b), the GR-II-formation reaction seems to attain an equilibrium as a result of the lowering of the concentration of the dissolved Fe^{II} ions.

Derivation of Empirical Formula of the Dissolved Species (DS). Since the Fe^{II} ion is adsorbed in the hydrolyzed form, FeOH⁺, and since two mols of Fe^{II} ions seem to react with one mol of γ -FeO(OH), the adsorption step may be written as:

$$\gamma$$
-FeO(OH)[(OH)_s(O)_s] + 2Fe(OH)₂ \Longrightarrow
 γ -FeO(OH)[(OH)_sFeOH⁺(O)_sFeOH⁺] + 2OH⁻ (3)
(ADInt*)

where the subscript s denotes the adsorption site. Here, it is assumed that one Fe^{II} ion is adsorbed on the OH group of γ -FeO(OH), and another, on the oxygen of the oxo-bridge of γ -FeO(OH). Since one OH⁻ ion takes part in the dissolution step,¹³⁾ the dissolution step may be given by:

$$ADInt^* + OH^- \longrightarrow DS.$$
 (4)

In the absence of SO_4^{2-} , the γ -FeO(OH) is transformed to Fe₃O₄ (Fig. 1). In this reaction, it is considered that the DS is directly transformed to Fe₃O₄. Since the DS contains one Fe^{III} and two Fe^{II} ions, the Fe₃O₄-formation reaction from DS may be given by:

DS
$$\longrightarrow 1/2 \text{Fe}_3 \text{O}_4 + 3/2 \text{Fe}^{2+} + x/2 \text{OH}^- + y/2 \text{H}_2 \text{O}.$$
 (5)

The overall reaction obtained from Eqs. 3, 4, and 5 for the Fe₃O₄ formation from γ -FeO(OH) is written as:

$$\gamma$$
-FeO(OH) + 2Fe(OH)₂ \longrightarrow

$$1/2\text{Fe}_3\text{O}_4 + 3/2\text{Fe}(\text{OH})_2 + (x/2-2)\text{OH}^- + y/2\text{H}_2\text{O}.$$
 (6)

or:

$$\gamma$$
-FeO(OH) + 1/2Fe(OH)₂ \longrightarrow
1/2Fe₃O₄ + $(x/2-2)$ OH⁻ + $y/2$ H₂O (6')

As stated previously, no OH⁻ is released during the Fe₃O₄ formation from γ -FeO(OH) (Curve D in Fig. 1). Therefore, x=4 in Eq. 6 or 6′. With x=4, we get γ =2. With these x and y values, the DS composition is estimated from Eq. 5 to be $[(Fe^{2+})_2(Fe^{8+})(OH^-)_4(O^{2-})]^{1+}$.

Green Rust-II Formation Reaction from γ -FeO(OH). We know the following: The ratio of Fe^{II}/Fe^{III} in GR-II is 2;^{1D} the formation of one mol GR-II from one mol of γ -FeO(OH) and 2 mol of Fe(OH)₂ forms 2 mol of OH⁻ (Curves B and D in Fig. 2); the formation of GR-II from γ -FeO(OH) and Fe(OH)₂ requires the presence of SO₄²⁻ in the reaction suspension. In addition, GR-II is composed not of ions but of electroneutral precipitates. These findings lead to:

$$\gamma$$
-FeO(OH) + 2Fe(OH)₂ + SO₄²⁻ \Longrightarrow [(Fe²⁺)₂(Fe³⁺)₁O_n(OH)_{5-2n}]²⁺·SO₄²⁻ + 2OH⁻ + (n-1)H₂O. (7)

If the GR-II is formed from DS in SO₄²-containing suspensions, then the reaction is given by:

$$[(Fe^{2+})_{2}(Fe^{3+})(OH^{-})_{4}(O^{2-})]^{+} + SO_{4}^{2-} \Longrightarrow$$

$$(DS)$$

$$[(Fe^{2+})_{2}(Fe^{3+})_{1}O_{n}(OH^{-})_{5-2n}]^{2+} \cdot SO_{4}^{2-}$$

$$(GR-II)$$

$$+ OH^{-} + (n-1)H_{2}O.$$
(8)

Equilibrium Consideration of the Green Rust-II Formation. A practical reaction for Eq. 7 is considered to be:

$$\gamma$$
-FeO(OH) + 2FeOH⁺ + SO₄²⁻ \Longrightarrow GR-II + $(n-1)$ H₂O, (9)

where it is assumed that a dissolved FeOH⁺ ion is a reacting species for Reaction (7). Equation 9 means that FeOH⁺ is adsorbed on γ -FeO(OH) and that GR-II is formed. The equilibrium constant, K, is given by:

$$K = 1/([\text{FeOH}^+]^2[\text{SO}_4^{2-}])$$
 (10)

or:

$$K = [H^{+}]^{2}/(K_{h}^{2}[Fe^{2+}]^{2}[SO_{4}^{2-}]),$$
 (11)

where K_h is the hydrolysis constant of Fe²⁺. Equation 11 tells that the concentrations of the dissolved Fe2+ and SO_4^{2-} ions and the proton (pH) affect the formation of GR-II from γ-FeO(OH). Here, we studied the effect of the SO₄²⁻ concentration. Figure 4 shows the results at a low SO₄²⁻ concentration (2.0 mol m⁻³). As may be seen here, only the first-stage reaction (GR-II formation from y-FeO(OH)) took place, as in the case of Fig. 2 (high SO₄²- concentration; 10.0 mol m⁻³). However, in the case of Fig. 4 (low SO₄²- concentration; 2.0 mol m^{-3}), about one fourth of the γ -FeO(OH) remained unreacted, and the formation of GR-II seems to have ceased. This indicates that the formation of GR-II attained an equilibrium at a low SO₄²⁻ concentration. Since an excess of FeII ions was added, the Fe-(OH)₂ precipitate coexisted with y-FeO(OH) and GR-II. but the formation of GR-II did not proceed further because of a lack of dissolved SO₄²⁻. The substitution of the solubility product of Fe(OH)₂ for [Fe²⁺] in Eq. 11 results in:

$$K = \left(\frac{K_{\rm w}}{K_{\rm h}K_{\rm sol}}[{\rm OH}^{-}]\right)^{2}[{\rm SO_{4}}^{2-}]^{-1}$$
 (12)

where $K_{\rm w}$ is the water-dissociation constant. The K value estimated from Eq. 12 is 2.14×10^8 for the values of ${\rm [OH^-]=10^{-5.5}, [SO_4^{2-}]=6.6\times10^{-4} \, kmol \, m^{-3}, }$ $K_{\rm h}=10^{-9.5,18)}$ and $K_{\rm sol}=10^{-15.15.18)}$

Table 2 summarizes the concentrations of the Fe^{II} ion calculated for various reaction conditions using Eq. 11 and the K value estimated above. The Fe^{II}

concentrations evaluated at the points shown by arrows in Figs. 3a and 3b (Column 2 in Table 2) are lower than those estimated from the solubility product of Fe(OH)₂(Column 4). This supports the speculation that the lowering of the concentration of the dissolved Fe^{II} ion causes the cessation of the formation of GR-II from γ -FeO(OH). The Fe^{II} concentration calculated

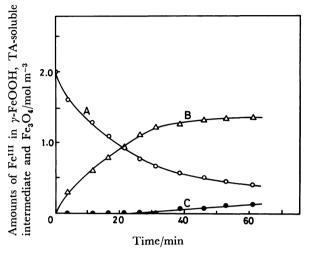


Fig. 4. Effect of SO²⁻ at a low concentration (2.0 mol m⁻³) on the transformation of γ-FeOOH. pH 8.5, Fe²⁺/γ-FeOOH=3.60. Curve A; γ-FeOOH, B; green rust II (TA-soluble intermediate), C; Fe₃O₄.

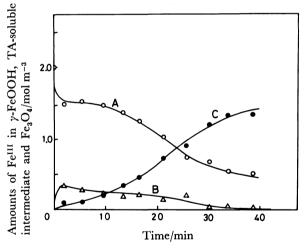


Fig. 5. The transformation of γ -FeOOH to Fe₃O₄ at pH 10.0. Fe²⁺/ γ -FeOOH=3.60, SO₄²=10.0 mol m⁻³ Curve A; γ -FeOOH, B; green rust II, C; Fe₃O₄.

Table 2. Concentrations of the Fe(II) ion calculated for various reaction conditions using the equation $K = [H^+]^2/(K_h^2[Fe^2+]^2[SO_4^{2-}])$ and $K = 2.14 \times 10^8$

pН	Fe ²⁺ Concentration Calcd (kmol m ⁻³)	SO ₄ ²⁻ Concentration (kmol m ⁻³)	Fe ²⁺ Concentration Evaluated from the Solubility Product of Fe(OH) ₂ (kmol m ⁻³)
8.5 (Fig. 3a) 1.91×10^{-5}		9.13×10^{-3}	7.08×10 ⁻⁵
8.5 (Fig. 3b)	1.87×10^{-5}	9.48×10^{-3}	7.08×10^{-5}
10.0	5.75×10^{-7}	1.00×10^{-2} *	7.08×10^{-8}

^{*} The Fe²⁺ concentration was calculated assuming this value, which is near those at pH 8.5.

at pH 10.0 and at a high SO₄²⁻ concentration (10.0 mol m⁻³) is 5.75×10⁻⁷ kmol m⁻³. On the other hand, the Fe^{II} concentration evaluated from the solubility product of Fe(OH)₂ at the same pH(10.0) is 7.08×10⁻⁸ kmol m⁻³. This suggests that little GR-II is formed at the pH value of 10.0, even at a high SO₄²⁻ concentration. Figure 5 shows the results under those conditions (pH 10.0, SO₄²⁻; 10.0 mol m⁻³). As predicted above, the amount of GR-II was very small, and Fe₃O₄ was mainly formed (Curve C in Fig. 5). These results suggest that the DS is transformed to Fe₃O₄ when little GR-II is formed from the DS.

References

- 1) M. Kiyama, Bull. Chem. Soc. Jpn., 47, 1646 (1974).
- 2) J. D. Bernal, D. R. Dasgupta, and A. L. Mackay, Clay Minerals Bull., 4, 15 (1959).
- 3) T. Misawa, K. Hashimoto, and S. Shimodaira, Corros. Sci., 14, 131 (1974).
 - 4) M. Kiyama, Bull. Chem. Soc. Jpn., 51, 134 (1978).
- 5) K. Kaneko and T. Katsura, Bull. Chem. Soc. Jpn., 52, 747 (1979).
- 6) T. Katsura, Y. Tamaura, and G. S. Chyo, Bull. Chem. Soc. Jpn., 52, 96 (1979).

- 7) Y. Tamaura, S. Mechaimonchit, and T. Katsura, J. Inorg. Nucl. Chem., 43, 671 (1981).
- 8) T. Kanzaki, J. Nakajima, Y. Tamaura, and T. Katsura, Bull. Chem. Soc. Jpn., 54, 135 (1981).
- 9) K. Kaneko, T. Takei, Y. Tamaura, T. Kanzaki, and T. Katsura, Bull. Chem. Soc. Jpn., 52, 1080 (1979).
- 10) Y. Tamaura and T. Katsura, J. Chem. Soc., Dalton Trans., 1980, 825.
- 11) Y. Tamaura, T. Yoshida, and T. Katsura, Bull. Chem. Soc. Jpn., 57, 2411 (1984).
- 12) Y. Tamaura, P. V. Buduan, and T. Katsura, J. Chem. Soc., Dalton Trans., 1981, 1807.
- 13) Y. Tamaura, K. Ito, and T. Katsura, J. Chem. Soc., Dalton Trans., 1983, 189.
- 14) K. Ito, Y. Tamaura, and T. Katsura, J. Chem. Soc. Dalton Trans., 1983, 987.
- 15) K. Ito, Y. Tamaura, and T. Katsura, Bull. Chem. Soc. Jpn., submitted for publication.
- 16) I. Iwasaki, T. Katsura, T. Ozawa, M. Mashima, H. Hamamura, and B. Iwasaki, *Bull. Volc. Soc. Jpn., Ser. 2*, 5, 75 (1960).
- 17) M. M. Benjamin and J. O. Leckie, J. Colloid Interface Sci., 79, 209 (1981).
- 18) C. F. Baes, Jr., and R. Mesmer, "The Hydrolysis of Cations," Wiley-Interscience Publications, New York (1976), p. 226.